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Abstract. We describe an experiment designed to evaluate the use
of the “Cortex Transform” (Watson, 1987) as an image preprocessor for
Sparse Distributed Memory. In the experiment, a set of images were
injected with Gaussian noise, preprocessed with the Cortex Transform, and
then encoded into bit patterns. The various spatial frequency bands of the
Cortex Transform were encoded separately so that they could be evaluated
based on their ability to properly cluster patterns belonging to the same
class. The results of this swdy indicate that by simply encoding the low-
pass band of the Cortex Transform, a very suitable input representation for
the SDM can be achieved. .

Sparse Distributed Memory (SDM), an associative memory described by Kanerva
(1988), is well-suited to perform high-level object recognition tasks because of its ability to
quickly classify patterns on the basis of incomplete or corrupted information. This ability
would be especially useful for visual recognition tasks, where typically an object in a scene
must be quickly identified despite the presence of noise and distortions in the imaging
process, or variations in the shape of the object. However, before SDM can be applied to
visual object recognition problems, it is necessary to determine how raw images should be
preprocessed and encoded in order to form a suitable input for the SDM.

To determine how raw images should be processed, it is first necessary to consider
what types of variations in the image may interfere with the proper classification of an
object. In this case, since we are interested in applying SDM to the problem of recognizing
2D shapes, we need to be concerned with such image variations as pixel noise, changes in
contrast, line thickness, or even slight variations in the shape’s structure (e.g., hand-drawn
characters). At this stage, however, we concern ourselves with the case of pixel noise only
(ie., an independent and identically distributed Gaussian process added to each image pixel
value).

Because the SDM uses the Hamming distance between two bit-patterns as a
measure of their “closeness,” our goal in preprocessing and encoding the image is to
develop a bit-string representation of the image such that two shapes belonging to the same
class give rise to bit-strings that are close in Hamming distance. Conversely, shapes
belonging to different classes should give rise to bit-strings that are well-separated in
Hamming distance. In this paper, we examine how well the Cortex Transform (Watson,



1987), serving as the preprocessor, accomplishes this goal for images that have been
perturbed with pixel noise only.

The Cortex Transform

The Cortex Transform is described in detail by Watson (1987, 1988). Here we
discuss only the important features that were used in the experiment.

The Cortex Transform subdivides the content of an image into different spatial-
frequency bands by filtering the image with a set of oriented, bandpass filters as shown in
Figure 1. This process converts a single image into multiple images, each of which contains
a unique subset of the spatial frequencies present in the original image. When properly sub-
sampled, these images can provide a very compact representation of the original image
because their pixels have very little correlation with one another. This property is not only
highly desirable for image compression, but would also be useful in preprocessing images for
SDM. This is because in the encoding process, we wish to maximize the information content
of each pixel being encoded. If the pixels are uncorrelated to one another, then each pixel is
“saying” the most it can about the content of the image.

In general, the Cortex Transform produces enough output images to give a complete
represention of all the different spatial frequency bands in an image, such as depicted in
Figure 1. For our purposes though, we chose to use only a portion of the bands. These are
two different band-pass filters subdivided into four orientations each, and two different low-
pass filters, as shown in Figure 2. Note that each set of bandpass filters results in a set of
four images - one image for each orientation - while each of the low-pass filters results in
only one image. All the filtered images were sub-sampled so as to reduce the number of
pixels with only a negligible loss of information (see Watson, 1988).

While the output images of the Cortex Transform contain both the magnitude and
phase of spatial frequency components, we considered only the magnitude to be important.
Our reason for this is that we were not interested in the exact location of spatial frequency
components (which the phase would provide), but more
importantly, the extent to which they are present in the

image and their approximate location. pixel o
value bit-string
Encoding the Cortex Transform
0 0000

The magnitudes of the filtered images were
encoded into bit-strings by first quantizing the pixel 1 0001
values of an image into five levels each and then using a

4-bit thermometer-type code, as shown in Table 1, to 2 0011
encode each pixel. The quantization levels for an image

were determined by finding the minimum and maximum 3 0111
pixel values in the image, and then setting the 4 1111

quantization thresholds at uniform intervals over the
range from minimum to maximum. A set of four images
(corresponding to four orientations) was similarly Table 1: Encoding quantized
quantized, except that the minimum and maximum pixel pixel values into bit-strings.
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values were computed over the set of all four images, and the ensemble was quantized as a
whole.

A bit-string representation of the image was then formed by simply concatenating the
4-bit codes for each pixel into one long bit-string. Thus, an NxN low-pass filtered image
would result in a bit-string of length NxNx4, and four (oriented) NxN band-pass filtered
images would result in a single bit-string of length NxNx16.

Experiments

The set of shapes used in this experiment were the 26 capital letters of the alphabet,
extracted from the Courier 24-point font on a SUN 3/60 workstation, as shown in Figure 3.
Each image contained only two pixel values: 0 for off (white) and 255 for on (black). These
images were then injected with noise by adding an ii.d. Gaussian process to the pixel
values. (Note: since the output of the noise injection process was a floating point image, no
special action needed to be taken for pixel values lying outside the interval [0, 255].) This

was done using standard deviations (o) of 40, 80, and 120. For each standard deviation, 20
samples of noise were generated.  Thus, each letter had a total of 60 different noisy

instances (3 values of ¢ x 20 instances/c). These images, in addition to the 26 original
(non-noisy) images, were then processed with the Cortex Transform under the four filter
arrangements shown in Figure 2. The filtered images were then sub-sampled and encoded
4-bits/pixel as described above. Since the original images were padded in a 32x32 square,
only the central regions of each sub-sampled, filtered image needed to be encoded, as
shown in Figure 4.

This entire process is illustrated in Figure 5.

Once the images were encoded, the resulting bit-patterns were compared by
Hamming distance to determine how well patterns of the same class were clustered
together. This was done as follows:

Assuming we have chosen a particular standard deviation of noise, ©, and a particular
filtering strategy (one of the four shown in Fig. 2), then we denote the j noisy instance of
pattern i as,

P,-j [i=1...26, j=1..20],
and we denote the original (non-noisy) instance of pattern i as,
P [i=1...26],

(P is a bit-pattern obtained by encoding a preprocessed image).
Then, we denote the Hamming distance between an original (non-noisy) instance of
pattern class k and the /™ noisy instance of pattern class i as,

dh]=lpk*-Plj|Ll

where | ¢ |;; denotes the L1 norm (Hamming distance for bit-strings). These
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distances were computed for all kij. The distances were then accumulated into two
different histograms for each k: one histogram for comparisons between P;* and instances

within class k (which we denote H;, ;), and another for comparisons between P,* and
instances from classes other than k (which we denote H,,, ;» 1) Formally, this can be

expressed as,
Hin_k(d) =X dyj» (sum over i=k, j=1...20),
and
Hm,_,-"_k(d) =X dyj» (sum over all i=k, j=1...20).

Then, by integrating each histogram up to some distance, D, we obtain a measure of
the signal-to-noise ratio that would result when reading the SDM with Hamming radius D.
That is,

Sin 10) = L Hy, ((d), (sum over d=0..D),
and,
Snot_in_k(D )=ZH no;_j,._k(d), (sum over d=0...D).

If S;, (D) is less than S, ;n (D), this would indicate that there are more instances

of class k than of any other class within D. In terms of reading from the SDM, then, this
would mean that there is at least a possibility of recovering the correct data when reading
the memory with P;* as the address and using Hamming radius D. Otherwise, the data

corresponding to P.* would most certainly be overwhelmed by data from other classes. -
Thus, we use the function

L if Sip D) <Spoy_in #D)

piD) =
0, otherwise,
to denote whether class k “passes” (1) or “fails” (0) at Hamming distance D. Then,

in order to get a global measure of performance at Hamming distance D, we average p,(D)
over all classes:

PerfiD) = 1/26 X p;(D), (sum over k=0...26).

This function provides us with a reasonable measure by which to judge the
representation formed by each of the filter processes.



Results

The function PerfiD) is plotted in Figures 6-11 for the different standard deviations of
noise (0=40, 80, 120) and filtering strategies tested. Figures 6-8 plot the performance of the
low-pass filters, and Figures 9-11 plot the performance of the oriented, band-pass filters
along with the performance of the raw image (i.e., no preprocessing)

For nearly all cases, the lowest-pass filter (i.e., the filter with the lowest cutoff
frequency) provided the best performance, yielding 96% “passes” at D=5 bits (Fig. 6). This
filter has a cutoff of 0-0.125 cycles/pixel and compresses the original 17x15 pixels to 5x4,
yielding a 12-fold decrease in the number of pixels (and hence the number of bits in the SDM
input bit-string).

Note that with a high standard-deviation of noise (0=120), the lowest-pass band no
longer provides the best performance (Fig. 8). The best performance is provided instead by
the next lowest band (0-0.25 cycles/pixel). Also at this noise level, the performance of the
highest-pass band filter (0.25-0.5 cycles/pixel) is worse than that of the raw image with no
preprocessing (Fig. 11). However, in all other cases, preprocessing yields an improvement
in the image representation.

Conclusion

Our goal in this experiment was to evaluate the Cortex Transform as a preprocessor
for Sparse Distributed Memory. The results indicate that for 2-D shapes for which the
image has been perturbed with pixel noise only, a dramatic improvement in the image
representation may be obtained by encoding the low spatial-frequency bands of the Cortex
Transform.

It should be noted that this experiment was intended as an initial study to evaluate
the use of multi-resolution or oriented filters with SDM. There are many further extensions
to this work. One would be to compute the performance of the various filters for other image
variations, such as line-thickness, contrast, or small structural variations.  Another
possibility would be to examine other encoding strategies, such as the use of real numbers
instead of bits. In this case, it may also be useful to investigate the effect of using an L2
distance metric instead of L1.

An important advantage of conducting tests such as described here is that it is
possible to evaluate a representation by itself without getting involved with the
implementation details of SDM. This allows one 0 focus on the special problems of the
application domain - such as in this case, the variations that can take place in an image -
before employing more powerful, higher-level machinery.
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Figure 3: The set of shapes used in the experiment. These character shapes were ex-
tracted from the Courier 24-point font on a SUN 3/60 workstation. Each font is 15x17, but padded
by zeros into a 32x32 image so as to avoid “wrap-around” effects with the Cortex Transform.

Qriginal image Sub-sampled, filtered images

8x9
bandpass-1

and lowpass-1
subsampled 2:1

32
T e 17
g filters \
15 bandpass-2 4x5

32 and lowpass-2 |[Hg
subsampled 4:1 3§

Figure 4: Extracting the central regions from the sub-sampled, filtered im-
ages. Since the original shape is 15x17 but padded into a 32x32 square, the only pixels in
the output that need to be encoded are those that correspond to the central 15x17 region of the
original image. These pixels are shown (shaded areas) for the sub-sampled, filtered images.
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